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Abstract. Thermodynamics of the quantum Toda lattice is studied based on Gutzwiller's
guantization condition and Yang-Yang's thermodynamic formulation. It is shown that
Gutzwiller's quantization condition becomes identical to the Bethe ansatz equation in the
thermodynamic limit. We have calculated the thermodynamic averages of the energy, higher-
order conserved quantities and the specific heat. The average energy and the specific heat
become close to those of the classical Toda lattice in the high temperature limit, while they are
similar to those of a harmonic chain in the low temperature limit.

1. Introduction

The Toda lattice [1] is one of the most popular models of completely integrable systems [2].
Among those integrable models, many-body problems and thermodynamics are well
studied for the3-function interaction gas (nonlinear Sédinger model) [3] and Calogero—
Sutherland model [4]. On the contrary, the study of thermodynamics of the Toda lattice has
been very limited. A pioneering work was done by Sutherland [5], where the Bethe ansatz
was applied to the Toda lattice in the classical approximation. This approach was further
pursued by Mertens [6] and Hader and Mertens [7]. They studied the thermodynamics of an
open Toda lattice by employing the Bethe ansatz and the Yang—Yang method [8]. Since the
open Toda lattice only has scattering states, the system was confined in a box. They treated
the case that the wavefunction is very small in the region O where the Toda potential
V(x) = e — oo asx — oo. Therefore applying the Bethe ansatz is only understandable
in the low momentum and low density regions.

Another way to confine the system is to couple the first and the last particles in the
same way as others, i.e. to make a periodic lattice. In the thermodynamicNimit oo,
bulk properties do not depend on the method of confinement. A satisfactory formulation of
the quantum periodic Toda lattice was first worked out by Gutzwiller [9]. He has developed
a systematic way of quantization of the periodic Toda lattice. His quantization condition is
well defined and very similar to the Bethe ansatz equation. Fowler and Frahm [10] have
studied the periodic Toda lattice based on Gutzwiller's quantization condition and shown
that the energy spectra are different from those given by the Bethe ansatz equation for a
finite particle system. They have also suggested that Bethe ansatz would give the correct
spectra in the larg&/ limit. Meanwhile, Sklyanin [11] has combined the quantum spectral
transform method (QSTM)R-matrix formalism) and Gutzwiller's formulation and derived
an equation for the spectrum of the quantum Toda lattice.

In [12], we have studied the ground state of the periodic Toda lattice and shown that
Gutzwiller's quantization condition is largely simplified in the laryelimit. The purpose
of this paper is to extend our study of the quantum periodic Toda lattice [12] for excited
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states and to formulate the thermodynamics of the Toda lattice according to the Yang—Yang
formulation. We will show that Gutzwiller's quantization condition becomes identical to
the Bethe ansatz equation in the thermodynamic limit.

In section 2, we will review the formulation of the quantum Toda lattice and, in section 3,
we will describe the thermodynamics of the quantum Toda lattice. Numerical methods will
be explained in section 4 and those results will be discussed in section 5. Section 6 is
devoted to a summary.

2. Formulation

2.1. Hamiltonian and conserved quantities

In order to make our paper self-contained, we will briefly review the Hamiltonian and the
conserved quantities of the periodic Toda lattice. The Hamiltonian of the pernogiarticle
Toda lattice is given in a dimensionless form as

N N
H=3 Z P+ Z explx; — Xi+1) (2.1)
i-1 im1

where we setky 1 = x;. Flaschka [13] has shown that the classical equations of motion
can be written in a Lax form

dL
— =|[B, L 2.2
& [B, L] (2.2)
whereL and B are theN x N matrices,
by a1 an
a bz ar O
L= cee (2.3)
0 ayvs by_1 an-1
an an-1 by
0 —ai ay
ay 0 —ap 0
B— - - (2.4)
O ayv> 0 —aya
—dan aN—-1 0

and the quantitieg; andb; are defined by
a; = 5 exp(3(x; — xi41)) b = 3pi. (2.5)

Therefore the eigenvalues of the matfixare constants of motion and thus the coefficients
of the characteristic polynomial are also constants of motion. Let us define the coefficients
A; as follows ( is N x N identity matrix):

det2rl — 2L) = Z A0V =2 (2.6)
where Ap = 1. The conserved quantities; are in involution with the Hamiltonian,

[H, A;] = 0, and also mutually in involution,4;, A;] = 0. The quantityA, is annth
order polynomial of the momenta and its explicit form is given bgndn [14]:

A, = (=1 Z Dir i+ Pir (= Xj)(=X},) - (=X) (n=k+2) (2.7)
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with X; = exp(x; — x;4+1). The sum is taken over all terms with different indices
(i1, i2, ... ik, j1, 1+ 1, ..., Ji, i+1. In the centre-of-mass (CM) systemy = —P = 0,
Ay = %PZ — H = —H. Thus the conserved quantitids and A, have physical meanings
of the total momentum and the energy, respectively. However, the quamtijtiés > 3)
do not have physical interpretation.

In quantum mechanics, the Hamiltoniahand the conserved quantitids are operators
and are given by the canonical quantization, i.e. the momeptusreplaced by the operator
p; = —ih(9/9x;). The constantis basically arbitrary and sets the scale of the system. The
advantage of the &hon-type conserved quantities is that the ordering problems of operators
{x;, p:} do not occur.

2.2. Gutzwiller's quantization condition

In [9], Gutzwiller developed a systematic way of constructing simultaneous eigenfunctions
of the operatorsd and A; for N = 2, 3 and 4 particle lattices. Later, his method was
extended generally for th&¥-particle periodic Toda lattice by employing the transfer matrix
method by Pasquier and Gaudin [15]. Let us briefly summarize his algorithm of quantization.
Suppose we hav® — 1 real numbersE, Az, A4, ..., Ay) and try to examine whether they
are simultaneous eigenvalues of the operaﬁir&nd A;.

Firstly we should solve a Hill-type equatian(x) = detC = 0, whereC is a tridiagonal
infinite matrix

1 (=¥
D(k—1) O

1 1 (=pV

D D
C= ® I (2.8)
DG+D) Dic+D)
1
O D(k+2) 1

with

D) = )Y + EGc)N 2 —iAs(ic)V 2 + Aa(i)V " +iAs(ic)V 2+ -+ iV Ay
(2.9)

and« is a complex number. The equatian(x) = detC = 0 has generallyV different

purely imaginary solutiong; (3_;x; = 0) in —3 < %(k) < 3. In the case ofN = 2,

the Schédinger equation of the periodic Toda lattice is the modified Mathieu equation and
A(k) is a well known Hill's determinant. In practical calculation, it is useful to rewrite
Hill's determinant as

AGA) = ripr g — (DVrtripg1/(DAA) D(iA + 1)} (2.10)
wherer, is defined by the recursion relation
re—1=rc — (=D¥r1/{D)D(k + 1)} (2.11)

with the boundary condition, — 1 at%i(x) — oo. The solutiorr, can be given explicitly
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as a determinant of the lower-right semi-infinite part of the matjx.e.r, = detC’ where

(=N
1 D(k+1) 0
1 1 (G
D(k+2) D(k+2)
C = 1 . . (2.12)
0 D(k+3) 1 ’

Letk =i (A1 < A2 < --- < Ay) be one of the zeros of Hill's determinant, that is,
Floquet’'s characteristic exponents. Then, Gutzwiller’s quantization condition is expressed

as
mim

¢; = arg V) + Zarg(l“(1+ (A — ex))) —arg(ri,) = N (mod ) (2.13)

k
wheref{ig;} (61 < g2 < --- < gy) are N different zeros of the polynomiaDb (k) (thus the
poles of A(x)). ¢; is a monotonically increasing function af, i.e. ¢;1 —¢; = 7(n; + 1)
with non-negative integers; [10]. TheseN — 1 non-negative integer@, ny, ..., ny_1)
are quantum numbers. The integer which is the same for allj characterizes the
symmetric property of the eigenfunction and has a one-to-one correspondence to the
irreducible representations of the dihedral groiyy [16]. It takes the valuesn =
0,+£1,+2,..., (N —1)/2 for N = odd andm = 0, +1, £2,...,£(N — 2)/2, N/2 for
N = even. The relation of the integet and the quantum numbefg;} is discussed
in [16, 17].

2.3. Open Toda lattice in a box

In this section, we will describe the quantization condition of the open Toda lattice with
periodic boundary condition. The Hamiltonian of theparticle open lattice is

N N-1
H = % Z plz + Z exp(x,- — xi+1). (214)
i=1 i=1

Since the open lattice has only scattering states, one must confine the system in a box
with periodic boundary condition. Imposing the periodic boundary condition is equivalent
to adding an interaction term egpy — x1 — L), where L is the length of the box. This

is because th&/th particle can interact with thév + 1)th particle beyond the box with

the potential exfxy — xy+1) where one should identifgy,1 = x1 + L. Therefore the
Hamiltonian of the open lattice with periodic boundary condition is

N
H=; Z P+ explrs — x2) + -+ + eXplxy 1 — xy) + eXplxy — x1 — L). (2.15)
i=1

In order to make the potential terms symmetric, let us introduce new varighlesuch
that

L
i =xi+(N—-2i+1)—. 2.16
yi =x;i +( i + )2N ( )

Then the Hamiltonian becomes

N N
H=3Y pl+e Ny exply —yi1) (2.17)
i=1 i=1

whereyy1 = y1. Note that the transformation (2.16) does not change the centre of mass
motion, i.e.) , x; = ) _; y;. Therefore the open lattice with periodic boundary condition is
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equivalent to the periodic lattice with a modified potential strength’’&. In other words,
the periodic lattice is a special case of the open lattice with a box lehgt0.

In quantum mechanics, the modified factor’&’ can be absorbed by rescaling
R — het’?N. Then one can repeat Gutzwiller's quantization procedure. In the end,
one should replace th®(x) function of (2.9) byD(x) — D(e*/?N«), and quantization
condition (2.13) by

¢; = 3LA; +argh™) + ) " argT(L+i(h; — &) — argriy, )
k

- % (mod ). (2.18)

3. Thermodynamics of the Toda lattice

3.1. Ground state

In this section, we will derive the quantization condition in the thermodynamic limit, i.e.
large N limit for the periodic lattice, or larg&/, L limit while keeping the densityp = N/L
finite for the open lattice in a box.

In [12], we have shown the following two important properties of Hill's determinant of
the periodic lattice in the larg® limit.

() The determinant;,, of the semi-infinite matrixC’ (2.12) approaches to 1 and the
difference decreases ag@®*") (« > 0).

(i) The jth pole k; and zeroi; are very close and the difference decreases(as®)
(B > 0).

We have also carried out numerical calculations with=1 and particle number
2 < N < 20, and obtained = 1.6 ~ 2.3, 8 = 1.2 ~ 1.8. These two properties largely
simplify Gutzwiller's quantization condition (2.13) in the lar@é limit and it becomes for
the scaleh = 1

mim

¢ = ;arg(r(1+ i(ki —kj)) =~ (mod ) 3.1

where we rewrite; = &; = k;. k;S are so-called pseudo-momenta. We will 3&tgp; = 0
without loss of generality. Those eigenstates characterized by the integdt be called
m-symmetric hereafter.

For the ground staten = 0 (N/2) for N=odd (even) and the quantization condition
(3.1) becomes

¢ =Y argU(L+i(k —k)) =0 (7/2) (modr) (3.2)
7

for N = odd (even). Defining the densip(k) of k;s asNp(k;) = 1/(k;+1 — k;), assuming
thatk;s will condensate a® — oo and fill continuously an interval{Q, Q], taking into
accountg; .1 — ¢; = m, one can obtain the integral equation

2 dy

p(x) =/ Z—K(x - e ) (3.3)
-0 JT

with foQ p(x)dx = 1, whereK(x — y) = 2Ry (1 + i(x — y)) and ¢ (z) is the digamma

function, i.e. ¥ (z) = I''(z)/T'(z). The maximum pseudo-momentu@ turns out as

0 ~ 2.8992 [12]
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N - . . -
10+ . . . e
5»— . .
| | Figure 1. Distributions of{x;} for 2 < N < 12 in the case oD = 0.948
0 1 2 A Only non-negativg;} are shown since the distribution is symmetric.

The quantization condition of the open lattice in a box in the thermodynamic limit can
also be given by a similar argument. Let us set the skate 1 for simplicity. Then the
guantization condition (2.18) becomes

1 .
¢ = ,Li + > argT (@ +i(y — &) — argriy,) = mW” (mod ). (3.4)
k
Sinceri,, = 1+ O(e™) and i; = ig; +O(e~#V), equation (3.4) can be further reduced to
1
¢ = Lk + 2}: argU (L + i(k; — k;))) = % (mod ). (3.5)

One should note that (3.5) is exactly the same as the Bethe ansatz equation. Therefore the
Bethe ansatz equation gives the exact spectra in the thermodynamic limit. Repeating the
argument similar to that of the periodic lattice, one can obtain the integral equation of the
density distributiono (k) for the ground state

1 2 dy
p) =+ /Q 5 K& =)0 () (3.6)
and the densityD = N/L is given by
Qo
D:N/L:/ o(x)dx. 8.7)
-0

We have solved (3.4) for & N < 12 and the integral equation (3.6) for the densities
D = 10.61, 0.948 and 0.288, which correspond to the maximum pseudo-momeata.8,
2.0 and 1.0, respectively. For example, we show in figure 1 the distributiofs; ofor
2< N < 12inthe case oD = 0.948. They tend to distribute outer region Asincreases
and its upper bound i® = 2.0 (N — oo0). The numerical factors, 8 turned out as
a ~ 230,287,476 andp ~ 1.77,2.25,3.68 for 0 = 2.8, 2.0 and 1.0, respectively.
Combining the result of the periodic lattice which correspond®te co (L = 0), one can
obtain the empirical relations

o~ 0.68/D + 2.2 (3.8)
B ~0.54/D + 1.7. (3.9)

3.2. Excited states and Yang—Yang formulation

Yang and Yang [8] developed the thermodynamics of the repulsifeenction interaction
Bose gas based on the Bethe ansatz equation. We will closely follow the idea of Yang and
Yang in order to formulate the thermodynamics of the periodic Toda lattice.
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For the eigenstate which has ansymmetry and quantum numbdps }, we will make
equally spaced lattice sit¢8,,, 6,, £, 6,,£2x, ...} with6,, = ma /N (—n/2 < 6,, < 7/2).
The quantum numbefs;} uniquely determine the anglég;} (Zi ¢ = O) and the pseudo-
momenta{k;} according to (3.1). For example, the ground state has the quantum numbers
np=ny=---=ny_1 = 0 and¢;s are closely packed, thus the pseudo-moméhtafill
continuously an interval-fQ, Q] at the largeN limit. However, for excited states, there
are omitted sites called holes and the range of the pseudo-momentum is not limited.

Let us define the functiog (x) such that

¢(x) =Y argC(L+i(x —k))). (3.10)
J

¢ (x) is a monotonically increasing function agdk;) = ¢;. In the largeN limit, we will
define the density distributions(k) and p, (k) according to Yang and Yang as follows:
Np (k) dk = Number of pseudo-momenta itk d (3.11)
Npy (k) dk = Number of holes in &l. (3.12)
Defining the functiom: (k) as¢ (k) = Nh(k) and counting the number of pseudo-momenta

and holes in the intervalid which is equal to the range @f(k)/x by definition, one can
obtain

% dp = %N dh = N(p(k) + pu(k)) dk (3.13)

;LZ =7 (p(k) + pp(k)). (3.14)
In the largeN limit, (3.10) becomes

heo = [ argr@+ic = nemd (3.15)
and its differentiation g;io\jes

21 (p(x) + p(x)) = /_Z K(x—y)p(y)dy (3.16)

where the kerneK (x — y) is the same as (3.3) and the normalizatiorﬁ%o px)dx =1,
Equation (3.15) is independent of the symmetry, in other words, the way to approach the
continuume; — ¢ (x) is the same for alli-symmetric states. It is natural since we cannot
distinguish the symmetry of each state in thermodynamics.

Let us calculate the partition functiafi. Z is defined by

Z(B) =Y exp(—BE[{ni)]) (3.17)
{n:}
where 8 = 1/T, putting the Boltzmann constaty = 1. E[{n;}] is the energy of

the state specified by quantum numbéts} and the sum is taken over all the possible
finite number excitations. One of the important properties of the Toda lattice is that

two states which have quantum numbéns} = (n1,n,,...,ny_1) and its inverse, i.e.
{n;}ine = (Wy_1,nN_2, ..., N2, n1), are degenerate [16]:

E[{nl}] = E[{ni}inv]‘ (318)
For the higher-order conserved quantities it was also shown [16] that

Ail{ni)] = Ail{ni}in] for i = even (3.19)

Ail{ni}] = —Ail{ni}ino] for i = odd (3.20)
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Therefore the eigenvalues of the operaﬁbr (i = odd) come out either in pair&A; or
A; = 0, and their thermodynamic average is identically zero. The pseudo-momenta of the
degenerate state are

{ki}inv = {_kN+17i} = (_kN» _kalv ) _k29 _kl) (321)

The simultaneous eigenvaluess ({ = even) can be expressed in terms of the pseudo-
momentafk;} as follows [12, 16]:

[N/2] N N

D AV =T —k) =[] + k). (3.22)

k=0 i=1 i=1
Taking the logarithm of (3.22), dividing by and taking the continuum limit, one can get
Inx + Nlim % N1+ Apx 24+ Agx 4 +..) = f In(x — y)p(y)dy

= [ e = o (3.23)

Since p;., (k) = p(—=k), we have
/ INGx = y)poym(y) dy = Inx + lim % IN(L+ Apx 2+ Agx 44 1) (3.24)

where oy, (y) = %(p(y) + p(—y)) and it is an even function. Therefore we can assume
that the density distributiop(x) is an even function, without loss of generality.

By expanding both sides of (3.24) in powers ofat x — oo and comparing the
coefficients, the first three terms are

1
1,.2 H
~ 3 = 4
1
— z{e") = lim_ 5 (Aa— 14%) (3.25)

[l

. 1
(86> = lim N (AG — A4Ar + %Ag)

N—o00

where (¢") = ff"oo x"p(x)dx. Since the conserved quantitigls, diverge as @QN*) for
N — o0, let us expand the divergent part a; as

Ay ~ azk,ka + GZk,k_lNk_l + - +ay1N. (326)

Inserting (3.26) into (3.25) and comparing thé—'th (1 < I < k) order, one can get the
following relations fork < 3:

1,2 1,.4 1.2 1,22
az1 = —5{&%) as1 = —z(&%) asp = 345, = (&%)
_ 1 _ _ Ly 2 3.27
a1 = —gl&") a2 = danaz1 = g(e)(e) (3.27)
13 1,.2,3
de3 = da2021 — 3051 = —45(€7)".

The average energy per particle is

u=E/N=—Ay/N

= —az; = 3(¢?)
_ % / () dr. (3.28)
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From (3.25)—(3.27) one can show by induction that the leading term of (3.26) can be
expressed in terms of the energy:
Ek
Ay ~ (_1)kﬂ' (3.29)
The derivation of (3.29) is rather involved and is postponed to the appendix.

Next we will count the number of statesidfor a fixed interval @ according to Yang
and Yang,

N(p + dx]!
dw = [I[Vp(é)x]![’;\’;;h di]!' (3.30)
The entropy d of this interval is
dS = Indw
=N(p+ pn)dxIn(p + pp) — NpdxInp — Np, dx In py, (3.31)
and the entropys is
SIN = [ delo+minio+ o) = plnp - puin gl (3.32)

This entropysS corresponds to the whole number of states given by the density distributions
p andpy,, and the symmetry of each state is not specified. In other words, the sum is taken
over all possiblen-symmetries. Since the symmetry of the state is determined by the whole
sequence of filled sites (particles) and omitted sites (holes), the products of the number of
states @ contain all symmetries. If one selects one sequence of particles and holes from
each interval & and combines them to make a whole sequence, it belongs to a certain
definite m-symmetric state. However, one should sum all possible symmetries afterwards,
and it is equivalent to that the symmetry is not specified from the beginning.

In the largeN limit, the partition functionZ (3.17) can be rewritten by the functional
integral of p,

Z(p) = / Dp exp—BE[p] + S[))

= [ Doexn-gFis) (3.33)
whereF = E — TS is the free energy and its explicit form is
FUN =3 [ deto=1 [ ario+ o+ o= pinp—pinpl. (334

By employing the variational principle, we will approximate the functional integral (3.33)
by its maximum contribution which corresponds to an equilibrium. Taking into account the
normalizationffooo p dx = 1, the variational equation is

SF/N — f(S/ pdx =0 (3.35)
where f is a Lagrange multiplier. Since and p, are related by (3.16), one can get
1 ©d
—f+fx2+TIn£—T/ yK(x—y)|n<1+p):0. (3.36)
2 Ph —oo 27T Ph
Defining the functiore(x) such that
P o)/ T) (3.37)

p(x)
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we have

e(x)=—f+ %xz -T f: %K(x — ) In(L+ exp(—e(y)/T)) (3.38)
and (3.16) becomes

pia+expe/ T = [~ K= 0, (3.39)

Equations (3.38) and (3.39) are very similar to those of Yang and Yang. However, (3.39)

is a homogeneous integral equation, while that of Yang and Yang is inhomogeneous. This

difference comes from the fact that the periodic Toda lattice is a closed system having only

bound states, while the repulsiganteraction gas is an open system having only scattering

states. The Lagrange multipligt has the physical meaning of the free energy per particle

in the equilibrium, which contrasts the case of thimteraction gas wherg is a chemical

potential. This is again due to the difference between a closed system and an open system.
Repeating the same argument of Yang and Yang, one can show that the fuhctipns

and go(k) = (k) + f are the momentum and the energy of an elementary excitation,

respectively. Since we are studying in the centre-of-mass system, the total momentum is

P = 0, which naturally results i}, ¢ (k;) = 0. On the other hand, the energy difference

of the excitation{k,} — {k} is given by

AE =) (solky) — eolky)). (3.40)

Thermodynamic averages of the higher-order conserved quantities are calculated as
follows. From (3.29),A2[p] can be expressed in terms B{p] at N — oo:

E k
Aulpl = (-2t VL (341)
Then the thermodynamic average is
—1)k
) = 2 [ DpEL exp-pFIoD. (342)

We can approximate this functional integral by the same function which satisfies the
extremum condition (3.35) within the order(gln N). Therefore once the density
distribution p (k) of the equilibrium and the average ener@ly) are calculated, then the
thermodynamic averages of the higher-order conserved quantities are simply given by
(Ag) = (‘,j)k (E)*. These are the same conclusions as the classical Toda lattice [18].

Thermodynamics of the open lattice in a box can also be formulated according to the
Yang-Yang method. We will simply write down the resulting integral equations which
should replace equations (3.38) and (3.39),

ex)=—pu+ %xz — T/ %K(x — ) In(A+ exp(—e(y)/T)) (3.43)

1 < d
PO+ exXple()/ T)) = o~ + / K= p(). (3.44)

and the density distributiom(x) is normalized asffooop(x)dx = N/L =D. puisa
chemical potential which is determined by the dengityand one should note that (3.44) is
an inhomogeneous integral equation which contrasts with the homogeneous equation (3.39).
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4. Numerical methods

We have solved coupled integral equations (3.38) and (3.39) of the periodic lattiEe=fdy

andT > 0 and obtained the density distributipiik) and quasi-particle energyk). In this
section, we will describe the numerical method in some detail. Numerical results will be
discussed in the next section. The calculation of the open lattice in a box has been carried
out by Hader and Mertens [7] and we will refer to their results.

41.T=0

Let us assume that the quasi-particle enes¢fy) is a monotonically increasing function

of k2 and has a zero &?® = Q2. This behaviour is the same as thénteraction gas and

this assumption will be confirmed by the numerical calculation. Then (3.38) and (3.39) are
simplified as

0
()= —f + 36+ / K e (.1)
-0 JT
2 d
p(x) =f z—yK(x —pO). 4.2)
-0 JT

Equation (4.2) is the same as equation (3.3). [kbe Q, p(k) = 0. In the case of =0,
equations for (k) and p (k) are decoupled and they are solved separately.

Equation (4.2) is a homogeneous Fredholm equation of the second kind. The kernel is
Kx—y)=2%Yy1+i(x —y)) and

: 1
Ny (L+iu) = —yp +u? Y e (lu| < 00) (4.3)
n=1

+ u?)
whereyg = 0.5772... is Euler's constant. Since the kernel is free from singularities, it
can be numerically solved easily. For example, we have solved (4.2) either by employing
the Gauss-Legendre quadratures and discretizing the equation, or by expanding the kernel
in terms of orthogonal functions in [12]. It is a kind of eigenvalue problem, i.e. one should
search an eigenvalu@ such that there exists an eigenfunctjotk).

Equation (4.1) is an inhomogeneous Fredholm equation of the second kind. Since (4.2)
indicates that one of the eigenvalues of the kernel is unity, we cannot solve (4.1) by
discretization and matrix inversion. Let us denote the eigenvalues and the eigenfunctions

of the kernel.t K (x — y) by {1;} and{¢;},
2 dy
/ o KO =9)0i(y) = higi(x) (4.4)
-0 JT

and assignig = 1, go(x) « p(x). Eigenfunctions are assumed to be normalized as
fodego,-(x)q)j(x) = §;;. Let us expand the inhomogeneous tespix) = —f + %xz

and the solutiore(x) in terms of the eigenfunctionig;}. By substituting these expansions
into (4.1) and comparing the coefficients, one can obtain

Entn
11—,

£(x) = £1(x) + cop(x) +

n>1

@n(x) (45)

whereg, = f_QQ dx e1(x)@,(x). The coefficientcy is indefinite and it is determined by the
conditione(£Q) = 0.
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42.T >0

For finite temperaturd” > 0, equations (3.38) and (3.39) are coupled and we must solve
them consistently. Let us rewrite (3.39) in a symmetric way:

> d
Py (x) = [ ) gymx — o) (4.6)

where
Ko(x —y) = [L+expe(x)/T)] 2K (x — y)[1 +expe(y)/ T2 (4.7)
ps(x) = [1+ exple(x)/ T)]Y?p(x). (4.8)

First we will solve (3.38) by iteration by starting with the inhomogeneous tertn) =

—f+ %xz with a certain initial valuef. Oncee(x) is calculated, next we calculate the
eigenvalues of the kerngly; K,(x —y). Equation (4.6) indicates that one of the eigenvalues
of the kerneI%K‘v(x — y) is unity and its eigenfunction ig;(x). Therefore, if none of

the eigenvalues are unity, we solve (3.38) with a different initial vafuend repeat the
above process until the kerngl K;(x —y) has an eigenvalue 1. In practical calculation, the
largest eigenvalue is well separated from others, and it is not so difficult to find the value
f such that the kernel has an eigenvalue 1. We have ma@psed oco) to a finite interval

and employed Gauss—-Legendre quadratures. In the low temperature region, the density
distribution p(x) varies vary rapidly around = ¢ satisfyinge(¢g) = 0 and many mesh
points are distributed around= ¢4. In solving (3.38), we have used another technique [7].
Since the kerneK (x — y) diverges atx — y| — oo, i.e. K(x —y) ~In|x — y|, we made

the kernel finite by subtracting(0),

eQ=—f-T /
Subtraction (4.9) from (3.38) gives

oo

d
%K(y) In(L + exp(—e(y)/T)). (4.9)

oo

o0

6(x) = £(0) + %xz 7 / %Kl(x —yIn(+ exp—e(n)/T)  (4.10)

whereK;(x —y) = K(x — y) — K(y) and K1(x — y) — 0 at|y| — oo. Therefore, in
practice, we have solved (4.10) with a certain initial vadi@). Once consistent solutions
£(x), ¢(0) and p(x) are obtained, the free energyper particle is given by
*d
f=—-e0) — Tf —yK(y) IN(1+ exp(—e(y)/T)). (4.11)

oo 2

5. Results and discussion

In figure 2, we show the density distributiopgk) of the pseudo-momentum f@ = 0, 0.2,

0.5, 1 and 2. The maximum pseudo-momenturii at 0 is Q ~ 2.8992. This is similar to

a free Fermi gas ang@ is called pseudo Fermi momentum. The density is larger for large
k value. This behaviour is quite different from other completely integrable models. For
example, density distributions of thieinteraction Bose gas [3] and Calogero—Sutherland
model [4] have a maximum &t= 0 and they monotonically decrease in the largeegion.

In the classical limiti — 0, Sutherland [5] has shown that the density distribution is given

by

1
p(k) =
b4

(02 — k2)1/2° (5.1)
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Figure 2. Density distributionsp (k) of the pseudo- Figure 3. Quasi-particle energies(k) for T = 0, 1
momentum forT = 0, 0.2, 0.5, 1 and 2. and 2.

It diverges at the maximurtk| = Q, however, figure 2 shows that the exagk) remains
finite at|k| = Q.

At low temperature” >~ 0, the density slightly diffuses and its behaviour aro{inid~ Q
is approximately given by

p(k, T) ~ [1 4 expek)/T)] 1p(Q, T = 0) + O(T?). (5.2)

This is also similar to a free Fermi gas. As the temperafirencreases, particle-hole
excitations increase near the Fermi level.

In figure 3, we show the quasi-particle energiék) for T = 0, 1 and 2. In the classical
limit, Sutherland also showed that

e(k) = —(Q? — k?)1? (k| < Q) (5.3)

and our exact calculation exhibits similar behaviour. This behaviour is similar to that of
the §-interaction Bose gas. Although we do not prove in a mathematically rigorous way
that e(k) is a monotonically increasing function &#, our numerical calculation certainly
indicates that our assumption is correct.

We show in figure 4 the temperature dependence of the free erféfy per particle.
At T =0, f(0) >~ 1.6762, which is the average energy per particle of the ground state.
f(T) is a monotonically decreasing function Bt

We show the average energy7) and the specific heaf (T') per particle in figures 5
and 6, respectivelyC(0) = 0 and it rapidly increases f& > 0, then it gradually decreases
after reaching its maximun® >~ 0.84 at7 ~ 2. In order to make a comparison, we also
plotted the classical valuag,;(T) and C.,(T) [18,19]. AtT — oo, the system behaves
like a classical one, and(T) ~ uy(T) — T/2, C(T) ~ Cq(T) — % If the exponential
potential is truncated by the second order, ie~el + x + %xz, the Toda lattice is reduced
to the harmonic chain (hc). The Hamiltonian of the harmonic chain can be expressed as a
sum of harmonic oscillators and their eigenvalues are easily obtained. The average energy
un-(T) and the specific heat,.(T) of the harmonic chain are given by

1
up(T) = 1+/ dx coth(8 sinmx) sinmx (5.4)
0
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Figure 4. Free energyf (T) per particle versug'. Figure 5. Average energy(T) per particle versug’
(full curve). Average energies of the classical system
and the harmonic chain are also shown by chain and
broken curves, respectively.
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Figure 6. Specific heatC (T) per particle versug (full curve). Specific
0 . , , , heats of the classical system and the harmonic chain are also shown by
0 1 2 3 4 T chain and broken curves, respectively.

1
Ce(T) = ﬂZ/O dx sinh2(8 sinzx) sir’ x. (5.5)

up.(T) andCy,.(T) are also plotted in figures 5 and 6. Bt= 0, u;.(0) = 1+2/7 ~ 1.6366,
which is less than that of the Toda lattice. However, it exceeds the value of the Toda
lattice asT increases. It is due to the fact that the harmonic chain is more easily excited
than the Toda lattice. This behaviour is more evident in the specific heatl' At O,
Cpe(T) = ZT =~ LOATT, while Crpg.(T) =~ yT with y = Zgjfg) ~ 0.9728. When
T — 00, Cpe(T) — 1 while C7,4,(T) — 1/2.

Our results are similar to those of the open Toda lattice in a box [6, 7]. It is
understandable since bulk properties do not depend on the way of confining the system.

6. Summary

We have studied the thermodynamics of the periodic Toda lattice based on Gutzwiller's
guantization condition and Yang and Yang's formulation. Although the basic
equations (3.38) and (3.39) look quite similar to those of Yang and Yang's equations,



Thermodynamics of the quantum Toda lattice 4851

(3.39) is a homogeneous equation while that of Yang and Yang for the repaifivetion
interaction gas is inhomogeneous. This difference comes from the fact that the periodic
Toda lattice is a closed system having only bound states and, in contrast, the repulsive
S-interaction gas is an open system having only scattering states. In the case of the open
Toda lattice in a box, Gutzwiller's quantization condition becomes identical to the Bethe
ansatz equation in the thermodynamic limit. Yang and Yang's equation of the open lattice
becomes the same inhomogeneous type as the repdléiwection interaction gas.

We have solved equations (3.38) and (3.39) and obtained the density distrijpgtipn
of the pseudo-momentum and the enes@y) of the quasi-particle. The density distribution
p(k) is quite different from other integrable models, i@k) increases in the larget-
region. However, except for this characteristic behaviour, other properties are quite similar
to those of a free Fermi gas. This similarity is also true for the quasi-particle enérpy
Making use of the density(k), we have calculated the average ener¢) and the specific
heatC(T) per particle for the temperature range<0l' < 4. We have also calculated the
thermodynamic averages of the higher-order conserved quantities and it turns out that they
are expressed in terms of the average enéfjyas(Ay) = (*k—?k(E)k, which is the same as
the classical Toda lattice. In the high temperature lifhit> o0, u(T) and C(T) certainly
become close to those of the classical system. On the other hand, in the low temperature
region, it behaves like a harmonic chain. These are due to the characteristics of the Toda
lattice which behaves like either a hard-sphere gas or a harmonic chain in opposite limiting
cases.

Appendix
In this appendix, we will prove (3.29). Let us define the functi®(x) such that
o
F(x) =) Agux2". (A1)
m=1
Then the expansion of the RHS of (3.24) in powerscddt x — oo is
oo
1
N+ F(x) =) (-D" ' =Fx)" (A2)
n=1 n
and we will write F(x)" as
o n oo
F(x)' = (Z A2mx2m> = Zcm,nxfzm. (A3)
m=1 m=1
The coefficients:, ,, satisfy the following recursion relation:
Cmn = Cmfl,nflAZ + Cm72,n71A4 +-- 4+ Cnfl,nflAZm72n+2 (2 < n < m) (A4)
Let us assume that the leading termAy; is
EJ —u) .
Az~ (—y 2= Ty (A5)
J:

J!
for j < k — 1 and employ an induction to prove that (A.5) is also valid foe k.
From the recursion relation (A4) and the initial valug, = Az, (m < k— 1), one can
show by the induction of the index that the coefficient,, , can be given by
—u)"N™
Cm,n = %{nconm - nCl(n - 1)m + nCZ(n - z)m + -
H(=D"C22" + ()" Ca) R<n<m<k), (AB)
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The proof is rather tedious but straightforward by employing properties of binomial
coefficients.

Since the LHS of (3.24) is finite, the order of (A2) i) and the coefficient of QvV¥)
(k > 2) should vanish, which results in the following equations:

1
k1= 3Ck2+ 3Ck3— o+ (_1)k_1zck,k =0 (A7)
and
k katk k
1 (—u)kN 1
=) (D =T (=D T Coll — (Cr(l — DF + 1 Co(l —2F + - -
Cr1 ;( ) 7kt ] ;( ) e{e 0 eC1( )"+ o Ca( )" +
+(=DCr 22 + (1) Cpa). (A8)
Using the explicit formula (A6), one can derive
_ ka k-1 1
1= (“){ Z(—l)k‘”(k )Tk —D(k—2) - (k—n+1)+ 1}
Koo & n!

o Nkak (K
_ oV ”k)l N {Z(—l)”nk_lkCn + 1}
) n=1

(—u)*N*
K

sinceY *_,(—=1)"n*~1C, = 0. Thereforedy = <‘“13ka is proved.

(A9)
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